Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Immun ; 1(1): 12-40, 2016 May.
Article in English | MEDLINE | ID: mdl-27294212

ABSTRACT

BACKGROUND: Low-level, chronic viral infections have been suspect in the development of select autoimmune diseases, including primary Sjögren's syndrome (pSS). Multiple studies have shown stimulation of antiviral response pathways in pSS tissues suggestive of a viral infection. Yet, with this data in hand, a causal link between a viral infection and development of pSS had not been identified. Therefore, a study was designed to further define the viral landscape within pSS-affected salivary gland tissue to identify potential viral-mediated triggers in the pathogenesis of this autoimmune disease. METHODS: A viral microarray was utilized to measure viral transcripts present in salivary gland tissue from patients diagnosed with pSS compared to healthy controls. Murine models of salivary gland localized HDV antigen expression were developed to evaluate the capacity of a chronic HDV signature to trigger the development of a pSS-like phenotype. RESULTS: Through this analysis, two distinct viral profiles were identified, including the increased presence of hepatitis delta virus (HDV) in 50% of pSS patients evaluated. Presence of HDV antigen and sequence were confirmed in minor salivary gland tissue. Patients with elevated HDV levels in salivary gland tissue were negative for detectible hepatitis B virus (HBV) surface antigen and antibodies to HBV or HDV. Expression of HDV antigens in vivo resulted in reduced stimulated saliva flow, increase in focal lymphocytic infiltrates, and development of autoantibodies. CONCLUSION: Identification of HDV in pSS patients and induction of a complete pSS-like phenotype in vivo provides further support of a viral-mediated etiopathology in the development of pSS.

2.
Tree Physiol ; 7(1_2_3_4): 283-296, 1990 Dec.
Article in English | MEDLINE | ID: mdl-14972924

ABSTRACT

A model of photosynthate production is the central component of a larger whole-tree ecophysiological growth process model for Populus (ECOPHYS). This photosynthesis model was validated by comparing predicted photosynthate production values for individual leaves and the total tree with hourly field measurements collected on four days spaced throughout a growing season. Simulated trees had identical numbers of leaves and leaf areas as the sample trees studied in the field, and hourly weather data collected on the plantation site were supplied as a model input. Total production for the four sample days ranged between 200 and 4900 mg CO(2) tree(-1) day(-1). Model predictions of total daily photosynthate production were within 12% of the observed rates for three of the four sampling days. Diurnal variations in stomatal conductance and ambient CO(2) concentrations and seasonal variations in area leaf weight were the primary sources of error. Total leaf area, proportion of sunlit leaf area, and photosynthetic efficiency were the most important factors influencing carbon dioxide exchange rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...